1^{ère} Spé

Physique

Thème: Mouvements et interactions

Mouvements de chute

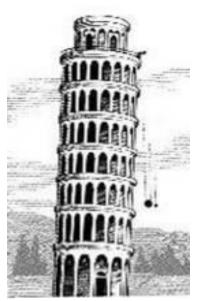
TP 10 ☐ Chap.12

> But du TP: Exploiter une vidéo pour comparer le vecteur variation de vitesse à la somme des forces appliquées au système.

I. Étude du mouvement d'une balle de golf

- Problématique : Lorsqu'on lance une balle de golf en l'air, est-elle en chute libre ?
 Document 1 : Galilée et la chute libre
 - En 1638, l'astronome et physicien italien **Galilée** (1564-1642) publie un ouvrage intitulé "*Discours et démonstrations mathématiques*", dans lequel il expose ses idées sur la chute des corps.
 - Lorsqu'un objet n'est soumis qu'à la pesanteur, il est en chute libre. En première approximation le concept de chute libre s'applique aussi à la chute d'objets dans l'atmosphère, les forces autres que le poids (poussée d'Archimède, résistance de l'air, force de Coriolis...) étant négligées.

• Dans un référentiel galiléen, la relation approchée entre le vecteur variation de vitesse $\Delta \overrightarrow{v}$ du système de masse m et la résultante (ou somme) des forces $\sum \vec{F}$ appliquées au système entre deux instants voisins Δt s'écrit : $\sum \vec{F} = \mathbf{m} \times \frac{\Delta \vec{v}}{\Delta t}$



Etude de la chute libre de 2 objets de masses différentes du haut de la tour de Pise. Galilée, 1605.

Document 3 : Vitesse et variation de vitesse

- $M_{i\text{-}1}$, M_i et $M_{i\text{+}1}$ étant les positions successives occupées par le système respectivement aux instants $t-\tau$, t et $t+\tau$, pour un intervalle de temps petit ; le point M_i peut être encadré par les points $M_{i\text{-}1}$ et $M_{i\text{+}1}$ séparés dans le temps de $\Delta t = t_{i\text{+}1} t_{i\text{-}1}$.
- La vitesse en M_i s'écrit : $\overrightarrow{v_i} = \frac{\overrightarrow{M_{l-1}M_{l+1}}}{\Delta t}$; la variation de vitesse en M_i s'écrit : $\overrightarrow{\Delta v_l} = \overrightarrow{v_{l+1}} \overrightarrow{v_{l-1}}$
- La valeur de la coordonnée de la vitesse selon l'axe des abscisses Ox s'écrit : $v_x = \frac{x_{i+1} x_{i-1}}{\Delta t}$.
- La valeur de la coordonnée de la vitesse selon l'axe des ordonnées Oy s'écrit : $v_y = \frac{y_{i+1} y_{i-1}}{\Delta t}$.

1. Protocole expérimental (Réaliser)

- Réalisons l'acquisition du mouvement d'une balle de golf lancée selon une trajectoire parabolique.
 - Sous Regressi, faire fichier / nouveau / vidéo.
 - ➤ Ouvrir le fichier « Parabole Golf » dans les documents de la classe et visualiser la vidéo.

Etalonnage

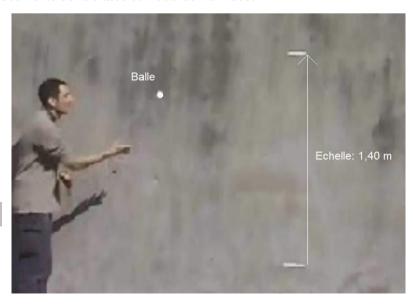
- ➤ Cliquer sur l'échelle puis pointer le trait du haut et le trait du bas : indiquer la distance qui les sépare (voir photo ci-contre).
- Déplacer l'origine du repère sur la première position de la balle lancée.

Mesures

Cliquer sur Mesures, puis pointer avec le plus de précision chaque position de la balle jusqu'à la dernière position.

Faire vérifier votre pointage avant de continuer.

- Exporter les données en cliquant sur l'icône Regressi Traiter
- \triangleright Visualiser le graphe de la trajectoire y = f(x).



2. Calcul des vitesses (Analyser-Réaliser)

2.1. (Ana) Proposer un protocole expérimental afin de déterminer la valeur de la coordonnée de la vitesse selon l'axe des abscisses, notée v_x, en utilisant dans l'onglet Expressions (du menu Grandeurs) les noms des grandeurs dans le menu à gauche. (Voir Document 3)

d Faire vérifier votre protocole par le professeur. d

- **2.2.** (Ana) Faire de même pour les coordonnées de la vitesse selon l'axe des ordonnées : v_y .
- **2.3.** (**Réa**) Visualiser la courbe de l'évolution de la vitesse v_x et de la vitesse v_y au cours du temps.

d Imprimer les courbes après accord du professeur. d

3. Exploitation (Analyser-Valider)

- **3.1.** (Ana) Sur quel axe y a-t-il une variation de la vitesse ? Que peut-on en conclure quant aux forces s'exerçant sur la balle ?
- **3.2.** (Ana) Créer la grandeur Δv_y (notée dvy dans Regressi) et modéliser Δv_y par une constante au cours du temps.
- **3.3.** (Ana) D'après le signe de la variation de vitesse Δv_y , indiquer le sens de la somme des forces $\Sigma \vec{F}$.
- **3.4.** (Val) Répondre quantitativement à la problématique.
 - Aide: Déterminer la résultante des forces si la balle est en chute libre, puis exploiter le document 2.
- **Données**: Masse de la balle: m = 46 g; Intensité du champ de pesanteur: $g = 9.8 \text{ N.kg}^{-1}$

II. Étude du mouvement d'une bille dans l'huile

• Une bille d'acier est lâchée dans une éprouvette remplie d'huile. Son mouvement est enregistré sous le nom « bille dans huile ». L'objectif est de déterminer la nature de cette huile grâce à la mesure de sa viscosité.

Document 4 : Données

Masse de la bille	Rayon de la bille	Volume de la bille	Intensité du champ de pesanteur
m = 2,055 g	r = 3,55 mm	$V = 1.87 \times 10^{-7} \text{ m}^3$	9,8 N.kg ⁻¹

Document 5 : Force de frottement et viscosité

• Lorsqu'un objet se meut dans un fluide, celui-ci exerce une force de frottement opposée au mouvement due aux interactions électrostatiques (ou friction). D'après la loi de *Stokes*, cette force s'exprime par $\vec{f} = -6\pi \times \eta \times r \times \vec{v}$ pour un objet sphérique de rayon r (en m) et de faible vitesse v (en m.s⁻¹). La viscosité dynamique η (êta) du fluide s'exprime en Pa.s.

Liquide visqueux	Olive	Pin	Tournesol	Arachide	Glycérine	Miel
ρ (en kg.m ⁻³)	$0,94 \times 10^{3}$	0.94×10^{3}	0.94×10^{3}	$0,94 \times 10^{3}$	$1,26 \times 10^{3}$	$1,42 \times 10^{3}$
η (en Pa.s)	0,08	0,19	0,31	0,84	1,50	10

Document 6 : La poussée d'Archimède.

La poussée d'Archimède (287-212 av J.C.) est l'action d'un fluide sur un corps immergé due à l'augmentation de la pression avec la profondeur. Elle est modélisée par une force opposée au poids de fluide déplacé qui s'exprime par P_A = ρ_{fluide} × V × g où V est le volume de l'objet immergé (en m³) et ρ_{fluide} la masse volumique du fluide déplacé (en kg.m⁻³).

1. Protocole expérimental (Réaliser)

• Réaliser l'acquisition de ce mouvement en imposant un axe vertical dirigé vers le bas.

🛮 Faire vérifier votre pointage avant de transférer vos valeurs dans Regressi. 🖠

- Sous *Regressi*, faire calculer la vitesse verticale, puis tracer la courbe v = f(t).
- Modéliser la vitesse (Modèles / Exp.1) par l'expression : $v = v_{\ell} \times (1 \exp(-\frac{t}{\tau}))$ où v_{ℓ} correspond à la vitesse

limite de la bille. Remarque : En maths, Exp(x) est la fonction exponentielle notée aussi e^x .

2. Exploitation (Analyser-Valider)

- **2.1.** (Ana) Dans le référentiel terrestre, décrire le mouvement de la bille.
- **2.2.** (Val) Le modèle choisi est-il compatible avec les résultats expérimentaux ? Indiquer la valeur de la vitesse limite v_{ℓ} . Vérifier cette valeur sur le graphe en utilisant l'*Outil graphique / Réticule*
- **2.3.** (Ana) Peut-on négliger la poussée d'Archimède P_A par rapport au poids P de la bille ? Justifier quantitativement.
- **2.4.** (Ana) Faire le bilan des forces agissant sur la bille aux instants t = 0 s, 0,16 s et 0,40 s. Les représenter sur un schéma
- **2.5.** (Ana) Dans le cas du mouvement rectiligne uniforme, quelle relation existe-t-il entre ces forces?
- **2.6.** (Val) En justifiant la démarche, déterminer la nature de cette huile de friction.